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ABSTRACT 

The paper describes integration of Inertial Navigation System (INS) and Global Positioning System (GPS) 
navigation systems using new approaches for navigation information processing based on efficient Sigma-
Point Kalman filtering and Particle filtering. The paper points out the inherent shortcomings in using the 
linearization techniques in standard Kalman filters (like Linearized Kalman filter or Extended Kalman 
filter) and presents, as an alternative, a family of improved derivativeless nonlinear filters. The integrated 
system was created in a simulation environment. An original contribution of the work consists in creation 
of models in the simulation environment to confirm the algorithms. The work results are represented in 
a chart and supported by statistical data to confirm the rightness of the algorithms developed. 

1.0 INTRODUCTION 

Accurate and reliable navigation systems will have an important role for enhanced military capabilities in 
the coming years. The INS and GPS are widely used navigation systems in several applications. The main 
reason for their usage is their dimensions and weight, and their relatively simple implementation in the 
navigation system. Integrated navigation means that the outputs from two or more navigation sensors are 
blended to increase the overall accuracy and reliability of the navigation system. Due to its reliability, 
autonomy and short-term accuracy, inertial navigation is usually regarded as the primary source of 
navigation data. The major drawback of inertial navigation is that initialization and sensor errors cause the 
computed quantities to drift. To stabilize the drift and ensure long-term accuracy, the inertial navigation 
system is integrated with one or more aiding sources. Nowadays, the GPS is the standard aiding source. 
Although, satellite navigation has a widespread use, problems with the GPS such as reception limitation 
and interference increase the relevance of other aiding navigation sensors. 

The main objective of the INS/GPS integration is to merge information from INS and GPS sensors and 
provide estimates of the states of the vehicle with greater accuracy than relying on the information from 
the individual sensors. For many years loose and tightly coupled schemes have been used to provide 
robust solution. These solutions were used in many applications as in automotive, aerospace robotics and 
other systems where there are needs for precise navigation. 

The inertial navigation is based on measurements of vehicle specific forces and rotation rates obtained 
from on-board instrumentation consisting of triads of gyros and accelerometers that create an IMU 
(Inertial Measurement Unit). The measurements from the IMU are used for determination of the vehicle 
position, velocity and attitude using Newton’s equations of motion in the navigation computer. The 
velocity and the position vectors are computed by double integration of the sum of the gravitational and 
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the nongravitational accelerations from the accelerometers and the orientation in space is determined by 
integrating the rotation rates obtained from the three gyros. 

The INS may be mechanized in either gimbaled or strapdown configurations. Gimbaled system is usually 
heavier and more expensive than a strapdown system and that is the reason why a strapdown INS is used 
for UAVs or other systems where the weight, size and cost play a significant role. Though INS is 
autonomous and provides good short-term accuracy, its usage as a stand-alone navigation system is 
limited due to the time-dependent growth of the inertial sensor errors that is the main disadvantage of 
using the INS. The accuracy of the INS is therefore highly dependent on the sensor quality, navigation 
system mechanization and dynamics of the flight vehicle. 

The GPS is a space based radio navigation system. This system can provide high accuracy positioning 
anytime and anywhere in the world. The main disadvantage of the GPS system is that the system is not 
self-contained and autonomous. Accuracy of the GPS system depends on many factors, for instance 
receiver clock bias, bias due to receiver clock drift, bias due to system clock error, ionospheric delay, 
tropospheric delay, random noise, etc. However, compared to the INS system, the GPS receiver is low 
frequency sensor with bounded errors, thus providing the state information at low update rates with non-
increasing errors with time. 

Inertial Navigation System 
 High position and velocity accuracy over short term 
 Accuracy decreasing with time 
 Affected by gravity 
 High measurement output rate  
 Autonomous 

Global Positioning System 
 High position and velocity accuracy over long term 
 Uniform accuracy, independent of time  
 Not sensitive to gravity 
 Non-autonomous 
 Low measurement output date 

Integrated INS and GPS system 
 High position and velocity accuracy over long term 
 High data rate 
 Navigation output during GPS signal outages 
 Precise attitude determination 
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Figure 1: Errors of navigation sensors 

2.0 NONLINEAR FILTERING 

The nonlinear filtering problem consists of estimating the states of a nonlinear stochastic dynamical 
system. The class of systems considered is broad and includes bit/attitude estimation, integrated 
navigation, and radar or sonar surveillance systems. Because most of these systems are nonlinear and/or 
non-Gaussian, a significant challenge to engineers and scientists is to find efficient methods for on-line, 
real-time estimation and prediction of the system states and error statistics from sequential observations. In 
a broad sense, general approaches to optimal nonlinear filtering can be described by a unified way using 
the recursive Bayesian approach. The central idea of this recursive Bayesian estimation is to determine the 
probability density function (PDF) of the state vector of the nonlinear systems conditioned on the available 
measurements. This posterior density function provides the most complete description of the state estimate 
of the systems. In linear systems with Gaussian process and measurement noises, an optimal closed-form 
solution is the well-known Kalman filter. In nonlinear systems the optimal exact solution to the recursive 
Bayesian filtering problem is intractable since it requires infinite dimensional processes. Therefore, 
approximate nonlinear filters have been proposed. These approximate nonlinear filters can be categorized 
into five types [13]: 

1) analytical approximations,  
2) direct numerical approximations, 
3) sampling-based approaches, 
4) Gaussian mixture filters, 
5) simulation-based filters. 

The most widely used approximate nonlinear filters are the Linearized Kalman filter (LKF) and Extended 
Kalman filter (EKF) that are representative analytical approximate nonlinear filters. The Kalman filter is 
used as a tool for stochastic estimation from noisy measurements. The Kalman filter is essentially a set of 
mathematical equations that implement a predictor-corrector type estimator that is optimal in the sense 
that it minimizes the estimated error covariance, when some presumed conditions are met. 

The EKF is similar to the LKF, but with a few differences. The main difference is that the linearization is 
performed around a trajectory estimated by the filter, not a pre-computed nominal one as in the LKF. 
Although the EKF maintains the elegant and computationally efficient recursive update form of the KF, it 
suffers a number of serious limitations. One of these limitations is that the covariance propagation and 
update are analytically linearized up to the first-order in the Taylor series expansion, and this suggests that 
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the region of stability may be small since nonlinearities in the system dynamics are not fully accounted 
for. Consequently, these approximations can introduce large errors in the true mean and covariance. 

Comparing the Kalman filtering with other methods of nonlinear filtering, the Kalman filter has a number 
of practical benefits. For example, there is a successful compromise between computational complexity 
and flexibility, the mean and covariance are linearly transformable, and the mean and covariance estimates 
can be used to characterize additional features of the distribution, e.g. significant modes [12]. 

As was mentioned above, the LKF and EKF simply linearize all nonlinear transformations and substitute 
Jacobian matrices for the linear transformations in the Kalman filter equations, but these procedures are 
accompanied by some shortcomings: linearized approximation can be extremely poor in cases when error 
propagation can’t be well approximated by a linear function, linearization can be applied only if the 
Jacobian matrices exist or in some situations calculation of Jacobian matrices is a very difficult and error-
prone process. 

Based on these reasons different approaches to nonlinear filtering were developed. In this paper the 
Sigma-point Kalman filter (SPKF) and Particle filters (PF) are described. These filters belong to the 
simulation-based category of filters and they will be discussed in more detail in the next two sections.  

3.0 PARTICLE FILTERING 

Numerical methods known as Monte Carlo methods can be described as statistical simulation methods, 
where statistical simulation is defined as a method that utilizes sequences of random numbers to perform 
the simulation. Despite the fact that Monte Carlo methods are known for such a long time only nowadays 
has progress in technique allowed us to apply these methods to complex applications. Monte Carlo 
methods are now used routinely in many diverse fields from the simulation of complex physical 
phenomena.  

The sequential Monte Carlo approach is known as the bootstrap filtering, the condensation algorithm, and 
the particle filtering [6]. Particle filters are simulation-based filtering methods where realizations 
(samples) of the state vector are produced to obtain an empirical approximation of the joint posterior 
distribution. In fact, particle filters are "tracking" a variable of interest as it evolves over time, typically 
with a non-Gaussian probability density function. In particle filters the probability density function is 
calculated using a likelihood function. For this reason multiple copies (particles) of the variable of interest 
are used, each with a specific weight and the variable of interest is then obtained by the weighted sum of 
all the particles, in other words, the normalized importance weight and corresponding particles constitute 
an approximation of the filtering density [15]. The particle filter is recursive (similarly to LKF and EKF) 
and operates in two phases: prediction and update. That means that after each operation, each particle is 
modified according to the variable of interest then its weight is recalculated and particles with small 
weights are rejected (this process is called resampling). 

Particle filter implementation can be described by the following algorithm:  

1. Initialization: Generate ( ) ( )i
0 0px x∼ , i=1,....,N  sample of the state vector is referred to as 

a particle. 

2. Measurement update: Update the weights by the likelihood  

( ) ( )( )*( ) ( ) ( ) ( ) ( )|
t

i i i i i
k k 1 k k k 1 k kp p h          i=1,....,N− −= ⋅ = ⋅ −vw w y x w y x  
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Calculate likelihood by  

( )( )
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3. Resampling: Replicate particles in proportion to their weights [2]. Only resample when the 
effective number of samples is less than a threshold thresholdN . 

( )( )
eff threshold effN 2i

k
i 1

1N N ,      1 N N   

=

= < ≤ ≤

∑ w
 

where the upper bound is attained when all particles have the same weight, and the lower bound 
when all probability mass is at one particle. The threshold can be chosen [1] as thresholdN 2N 3= . 

4. Estimation of states & Prediction of particles: 

For estimation (approximation) of states MMSE (Minimum Mean Square Error) or MAP (Maximum 
A Posteriori Estimate) estimators can be used.  

Prediction of new particles according to ( )( ) ( )|i i
k 1 k 1 kp+ +x x x∼  

5. Let k k 1= + and iterate to item 2). 

 

Figure 2: Systematic Diagram for Generic Particle Filtering, similar like in [2] 
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4.0  SIGMA-POINT KALMAN FILTER 

The Sigma-point Kalman filter – also known as an Unscented Kalman filter (UKF) was introduced by 
Julier and Uhlmann in [11]. In this work they described nonlinear transformation, called the unscented 
transformation (UT), in which the state probability distribution is represented by a set of sampled sigma 
points, which are used to parameterize the true mean and covariance of the state distribution.  

An unscented transformation is based on two fundamental principles [5]. First, it is easy to perform 
a nonlinear transformation on a single point. Second, it is not to hard to find a set of individual points in 
state space whose sample probability density function approximates the true probability density function 
of the state vector. 

The SPKF belongs to a type of sampling-based filters and represents a recursive MMSE estimator, that is 
a derivative-free (no need for Jacobian and Hessian calculation) alternative to the LKF and EKF. The 
SPKF is built on the principle that it is easier to approximate a Gaussian distribution than it is to 
approximate an arbitrary nonlinear function (this is the difference between SPKF and LKF or EKF). In the 
SPKF, a minimal set of sample points are deterministically chosen (this is the difference between SPKF 
and PF where the entire probability density function is calculated) and propagated through the original 
nonlinear system to capture the posterior mean and covariance of a random variable accurately to the 2nd 
order Taylor series expansion for any nonlinearity. 

The Sigma-point Kalman filter can be described by the following algorithm. 

1. Initialization: 

Set parameters , ,  α β κ , where α  is a constant that determines the spread of the sigma points 
around the mean of state x  (usually small positive value 410 1α− ≤ ≤ ), β  incorporate prior 
knowledge of the distribution of x  (for Gaussian distribution, 2β =  is optimal), κ  is a secondary 
scaling parameter (if x  is a Gaussian distribution, then x3 nκ = −  is used for multi-dimensional 
systems). 

Initialize: 

0 0E=x x     T
0 0 0 0 0E= − −P x x x x  

Redefine state vector to new augmented state vector 
Ta T T T =  x x w v . 

a a T
0 0 0E 0 0 = =  x x x    

0
Ta a a a a

0 0 0 0 0

0 0
E 0 0

0 0

 
 = − − =  
  

P
P x x x x Q

R
 

where Q  is covariance of process noise, R  is covariance of measurement noise. 

Calculate composite scaling parameter ( )2
a an nλ α κ= + −  and weights associated with the ith point 

( )( ) ( )0 mean
aW nλ λ= +    ( )( ) ( ) ( )0 cov 2

aW n 1λ λ α β= + + − +  

( )( ) ( )( ) ( ).i mean i cov
aW W 0 5 n λ= = +   , , ai 1 2n= …  

where an  is dimension of augmented state vector a x w vn n n n= + + , xn is dimension of state vector, 

wn  is dimension of process noise, vn  is dimension of measurement noise. 
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2. Calculate the sigma points  

( ) ( ) ( ) ( )( ) ( )( )TT T Ta x w v a a a a a
k 1 k 1 k 1 k 1 k 1 k 1 a k 1 k 1 a k 1n nκ κ− − − − − − − − −

  = = + + ⋅ − + ⋅      
x x P x PX X X X  

3. Time update 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )
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( ) ( ) ( )

,

, ,
, ,

, , ,
, , , , ,

, ,

,
, ,

,

,

a

a

a

x x w
k k 1 k 1 k 1

2n
mean i x i

k k 1 k k 1
i 0

2n Tcov i x i x i
k k 1 k k 1 k k 1 k k 1 k k 1

i 0

x v
k k 1 k k 1 k 1

2n
mean i i

k k 1 k k 1
i 0

W

W

W

− − −

− −
=

− − − − −
=

− − −

− −
=

=

= ⋅

   = ⋅ − ⋅ −   

=

= ⋅

∑

∑

∑
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x

P x x

h
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4. Measurement update 
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5. Let k k 1= +  and iterate to item 2). 

5.0 SIMULATIONS & RESULTS 

The tests of our SPKF and PF approach to filter navigation information were performed in a simulation 
environment. For this, the trajectory of a moving vehicle was generated and models of the sensor errors 
(IMU, GPS) were developed. Errors of the IMU were modeled as in navigation grade systems where 
accelerometer errors are bias 0.1 mm.s-2 and noise 0.1 mm.s-2.Hz-1/2, and gyro errors are modeled with bias 
0.01 deg.h-1 and noise 0.005 deg.h-1.Hz-1/2. For GPS model was considered receiver working on C/A code 
with position error 115 meters, 0.01 m.s ,ρ ρσ σ −= =∆  for all used satellites. The integration scheme used in 
the model was tightly coupled with pseudorange and delta pseudorange measurements. 

Processed outputs were compared to the etalon model of the movement depicted in Fig. 3. The trajectory 
is characterized by minimum changes of movement parameters, for example: maximum speed is only 
15 m.s-1 also accelerations in all directions are small (the movement of a small R/C aircraft). The trajectory 
of this object was evaluated by model of the INS and GPS sensors, respectively.  
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Figure 3. Etalon trajectory of vehicle 

The results of EKF, SPKF and PF were compared and evaluated. These results are in table 1, where root-
mean-square estimation errors for these three filters are given. 

 

Figure 4: 3D Position error 
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Figure 5: 3D Velocity error 

 

Figure 6: Histogram of particles, and INS error 
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Figure 7: Position errors of the filters during 600s simulation 

As results, the statistic data RMS of error (difference between etalon trajectory and trajectory indicated by 
systems respectively Fig. 4 and Fig. 5) were calculated. The simulation of the particular filtering methods 
took 600 seconds. The stand-alone INS maximum error in zn axis was -65 meters, which grows in the time. 
The calculated maximum GPS position error was approximately 24 meters.  

In figure 7 are depicted trends of filters errors in xn, yn and zn axis, respectively and in figure 4 and figure 5 
are depicted trends of 3D position and velocity errors, respectively. In tab. 1 are evaluated statistical 
parameters of these errors over complete simulated flight trajectory. From this table is unambiguous, that 
SPKF shows better performance characteristics than EKF and Particle filter.  

The Particle filter shows higher error than was expected even we have used 20000 or 50000 particles. The 
reason is probably in high dimensionality of the model that causes flattening of the approximated 
probability density function. For better illustration of the particle filter functionality figure 6 was created. 
There are depicted trends of particles (histograms of all generated and resampled particles) in particular 
axes for uncoupled integration where is no corrections of INS and GPS systems. The solid lines at the top 
of each histogram are trends of stand-alone INS errors. 

Table 1: Test results 

FILTER 3D position error 
[m] 

3D velocity error 
[m.s-1] 

EKF 0.91 0.35 

SPKF 0.68 0.29 

PF 20000 1.44 0.65 

PF 50000 1.3 0.54 
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6.0 CONCLUSION & FUTURE WORK 

The presented paper describes different approaches to navigation information processing using Particle 
filter and Sigma-point Kalman filter instead of traditional approaches using Linearized Kalman filter or 
Extended Kalman filter. 

The results show that generic Particle filter is appropriate to use in INS/GPS navigation systems but is not 
optimal solution in this case. The reason is that the number of particles used in the filter depends on the 
system dimension. One of the ways how to increase efficiency of PF is using Rao-Blackwellized filter also 
known as Marginalized particle filter [14, 16]. This filter is split into two parts where on one (nonlinear) 
part is applied PF and on the second (linear) part is applied Kalman filter. The reason for this is that linear 
states can be optimally estimated using Kalman filter and we reduce the number of states for particle 
filtering and the number of particles as well. Main disadvantage of the PF is its computational complexity 
which corresponds to number of used particles. 

Since the Sigma-point Kalman filter accounts for system nonlinearities, from the results it is clear that it is 
more accurate in state estimation than using standard Kalman filter. Comparing computational complexity, 
there is no big difference between SPKF and EKF and should be reduced using Reduced Sigma-point 
Kalman filter that uses simplex sigma points yet [5, 9, 10]. 

There is also need to say that all tests were conducted under ideal conditions. It means, that we have used 
ideal placement of the sensors (no lever-arm), the other errors such scale factor, non-orthogonality etc. in 
the INS were neglected. Also the model of the GPS receiver was simplified. In future we would like make 
some experimental results with real hardware where algorithms will be tested in real environment to 
confirm our ideas and also test Sigma-point Particle filter which collects benefits of both presented filters 
[22]. 
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